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THE DEFORMATION THEORY OF PLASTICITY OF ANISOTROPIC MEDIA™

B.E. POBEDRYA

Mutually inverse defining equations of the deformation theory of plasticity
of media with arbitrary anisotropy are written assuming the relations

between the stresses and deformations to be qn==111nnav The conditions

of plasticity and unloading are considered. Theorems are proved on the
existence and uniqueness of solutions of the quasistatic problem of the
Anfrrvmarin Fthametry A€ nlacrdi~ditey and ~F aimnla Taading Mhao math~d ~F
UT LUVL UG LWL HA\;ULX Ao ya.aat.a.\.;\.] Qild UL QJ.H-IH-I.C AJQLLLINS . AAIT WT AU VL
successive approximations for solving the problem is considered, and its
convergence is proved. Various means of simplyfying the theory are

considered. Theorems of minimum Lagrangian and the maximum of the
Castiglianian are proved.

In the deformation theory of plasticity the stresses and deformations are connected by
finite relations. When these relations are quasilinear (tensor-linear) /1/, and the medium
is isotropic, for simple processes /2/ all theories of plasticity agree with the deformation
theory (the theory of small elastic-plastic deformations) /3/. However, in practice that
theory is used for a wider class of processes of deformations. The advantage of this theory
is its simplicity, the mutually inverse relations between the stresses and deformations, the

availahility of theaorems of exisgtence and unigueness and of the minimum of the Lagranagian

availability theorems of existence and uniqueness and minimum grangian
and maximum of the Castiglianian, of the theorem of simple loading and unloading /2/, and
also the existence of an effective method of solving quasistatic problems, the method of

alastic asslutions /2/. whose convercence was adecuatly analuzed in /4, 5/ Relow a deforma-
elastic sclutiocns /2/, whose convergence was adegquatly analyaed in /4, 2/. Below a derforma

tion theory is constructed for initially anisotropic media.

1. Let the symmetric stress tensor ¢ be a tensor function of the small deformation
tensor &; this function is invariant to transformations that characterize certain classes
of anisotropy. The function can be represented in the form of the dependence of the tensor
e and some "parametric" tensors A;, A,, ... that define the considered anisotropy class /l/.
Let us assume that this anisotropic function is quasilinear (tensor-linear) /1, 6/. This
means that its polynomial representation /7/ contains only tensors linearly dependents on &,

*prikl.Matem.Mekhan.,48,1,29-37,1984
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and tensors independent of it.
Let the form of the quasilinear tensor function in some rectangular Cartesian system of
coordinates of three-dimensional Euclidean space have the form

n
= 2 Yally ... L) B (-1
where Y, are some invariant scalar functions of combined invariants I, I,, ... of the tensors
€, AL, A, ..., and PW is some tensor independent of the deformation tensor e or dependent
on it linearly. 1In the selected system of coordinates we can write
8,
y Z @ O o e, (1.2)
= b7, 7 I [ == Oqp, ——=h
8 as,,., 7
7 [»3

i.e. the deformation tensor is expressed in the form of a sum of n pairwise orthogonal tensors
p'@.

It is assumed that summation from 1 to 3 is carried out over the recurrent Latin letter
indices, while there is no summation over the Greek letter indices. It can be seen that the
number n (a, f =1, 2, ..., n) cannot exceed six /1/.

We shall call the invariant Ix linear, if a constant tensor a™ exists such that

m

) ( ¢
il af;‘), = (@Pay, Z‘Jt}c)‘-—’ 8i;, m<n
%=1

7

Pij =

Otherwise the invariant [y is called non-linear. We can now represent relations (1.1)

in the form
n

- )
o= Yullu.... )2+ Y ¥y(h... 1,.)”" (1.3)

r=1 Y=m+1

Without stating this every time, we shall assume that the indices a and p take the values
1 to n, the index x takes values from 1 to m, and ¥ takes values from m -+ 1 <to n.

Relations (l1.l) or (l1.3) establish a connection between the stresses and defromations
when, for instance, the n functions

Yeo=Yalls, ... ’Iﬂ)=ﬁ§1AaB[1 — g (e, I g (1.4)
Cijklp§q')p§r2)
Aaﬂ::-—la;ﬂ———

where Aup is some square matrix n X r with constant coefficients, Cij; are the components

of the moduli of elasticity tensor, and wg are functions of the invariants [, ..., I, , are
known from experiment. For a linearly elastic medium we set @g = 0.
If the scalar functions (1.4) are solvable for I, I, ..., I,,
n
=Ja(Y,,...,Yn)sngaau—na(Yl....,Y,n Yp (1.5)
Ba,ﬂ= ”“P‘?)P
YoYg

where J;;; are the components of the elastic yield tensor, and the tensors P are defined

as in (1.2)
piﬁ) Y. p@
o= PP, Sp=0bup =—g
2 4j B af 35” 70.

Qa=]

then (l1.3) are also solvable for the deformations

L o = Py
e;j=ZI,‘(Y1,...,Yn)T;-+ Z L(Yas ooy V) g (1.6)
*=1 Va1

;t;. is, thus, possible to establish mutually inverse relations between the tensors P®
and P«

P —-7—p§°" pf?’— = P



12

The deviator of the deformation tensor e, that satisfies condition /2/
1
ajf)=ey(t) — 5 0(t)dy=Ar(t)e’, O=¢u

where e° is a tensor independent of time (of the load parameter), is called the simple deform-
ation process. Similarly for the simple stress process

S” (ty= [+ 73] {ty—o () 6” = i {t) Suc, o= ‘f,u;g

where 8° is the deviator of the stress tensor which is independent of time (of the load
parameter) .
We call the processes of deformation e (f) and of stressing o (f) simple in the narrow

sense, if o . o
eu{ty=A( e, oyE)=p(d oy

We call the process of defromation and stressing, respectively, simple in the broad sense,
if

&, =A@ pi?, PP (t)=n(t) PV

It will be seen that to the simple process of defromation in the conventional, broad and
narrow sense there corresponds the stressing process in the conventional, broad and narrow
senses, respectively'.

In the deformation space let the function @ (Iy, ..., I,) be specified, and the quantity @,
which is experimentally determined and may depend on the loading history /3, 8/. The condi-
tion of plasticity involves the following. If

Uy o L)< (1.7

the relation between the stresses and strains (1.3), (1.6) obeys Hogke's law, i.e. it is
necessary to set We=0,Qu =0 in (1.4) and (1.5). If, however, inequality (1.7} is violated,
plastic deformation takes place. If the process is active (loading) {oydey; =Ydl, + ...

Y. dl, oxr, for example, dp>»0 ), (1.4) hold. 1If, however, at some instant unloading begins

(passive process), (oydey=Y,dl, + ... Yadl, <0 or, for example, dp<{0 ), then it is
necessary instead of (1.4) to use the conditions of, for instance, linear unloading

ki
YQ»Y¢'=E AGB(IB_'IB') (1.8
p=1
where the quantities denoted by a prime correspond to stresses and deformations accumulated

up to the instant when unloading begins.
Obviously the condition of plasticity (1.7) may also be formulated in the stress space

DY,y ..., Tl O (1.9
Then at unloading (eydoy;=IdY,+ ...+ 1dY, <0 or dP<0) instead of (1.8) we
have
n
Iy— qu:é Bus(Yp— Yyg) (1.10}
3 3
2. The equations of egquilibrium
oy + Xi=0 (2.1)
where X is the vector of volume forces, can be written, using (1.4} in the form
hid (%) 1 vy
of} 2N — 2.2)
YoYnsm+[ Y, Yepe] 4 K=0 (
A==l Y=m-+1

Suppose that on the part I; of the body boundary I that bounds the volume V, we are
given, for instance, the displacements =0, and on another part Z, the load §;°

Yiln=0, oyn;le==5" (2.3)

Then the quasistatic problem of the deformation theory of plasticity (in displacements)
consists of solving the equilibrium equations (2.1) and satisfying the boundary conditions
{2.3), taking condition (1.4) or {1.8) into account {(depending on whether loading or unload-
ing takes place) and the Cauchy relations
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g5 =Yg (U, 5 + Uj4) (2.4)

We shall call problem (2.2), (2.3), (1.4) or {(1.8), (2.4) problem A.
The quasistatic problem in terms of stresses (problem B) consists of solving the equa-
tions of equilibrium (2.1) and six eqguations of compatibility

Ni1g = €ixt €jpunin, tm = 0 (2.5)

when the boundary conditions (2.3} and satisfied. 1In (2.5) and {2.3) the deformations (in
displacements) must be expressed in stresses in agreement with (1.6) and (1.5) or (1.10).
The guasistatic problem C can also be formulated in the deformation theory of plasticity in
stresses /9/.

A medium is said to be anisotropically incompressible, when the conditions

I.=0, =1, ..., m {2.6)
hold. For an anistoropically incompressible medium in problem A, m equations (2.6) are added
for the m unknowns Y., x=1,...,m in the equilibrium equations (2.2), since in (1.4) only
relations

Y\’=Y‘91([m+h~-- ,In)Eb-g“qué[i"m\'(Imly "“}‘nnfﬁ

remain.
To solve the boundary value problems, for instance problem A, the method of successive
approximations may be used

Cist™ = Cizud®t; — B Loy, 5 (0®) + X} 2.7
ut(qﬂ) [z =10, CiJkluk n; I)‘."‘Cuklu’k, n; '2“""’
B [03; (u@) 5, — S5}
where the expression 0y (u) denotes that the stresses are expressed in terms of deformations
by relations (1.3) and (1.4} or (1.8), and the deformations in terms of relations (2.4).

wWe will say that a material possesses a soft characteristic with respect to the invariant
Iy, if

(2.8)

ay, I, < ar,
ar, ' Y, N8, (2.9}
and a stiff characteristic with respect to that invariant, if
@ Y, al I
Yo o Yo @ e (2.10)

woPT W, ST

a

{Note that the conditions of linear unloading (1.8} are only valid for materials with a

soft characteristic.)
8y A
Demlo Y |t | Ge=V. Y v,
1 8 1 ﬂ

We put
/X
(xa4B) (@ B)

Wy

and suppose that in the case of a soft characteristic with respect to the invariant I, the
following inequalities are satisfied:

ay Y,
0<meS3r- — Da <7+ Da S Mo (2.11)
m<._.___g“ -—.+GG<N0 (2.12)

while for the case of a stiff characteristic with respect to the same invariant the inequal-
ities

Y ay,

0<m0<‘}’:‘—pa<"§7‘?‘ + Dz < Mo (2.13)
61

0Zne —Ga —-—+Ga,<No (2.14)

are satisfied where My, Mgy ny N, are certain positive numbers.
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Theorem 2.1. Suppose a unique generalized solution exists of the problem of the theory
of elasticity of an anisotropic body u® that is obtained from problem A when g = (¢ =1,
... n). Moreover suppose inequalities (2.l1l) or (2.13) hold, and the volume and surface forces
belong to the space L; /10/, and

Xis Ly (V), 92> % S =Ly (2, ¢ >,

Then a unique generalized solution u* of problem A exists, and for any value of the

iteration parameter BO<B<HMy) and the process of successive approximations (2.7), (2.8)
beginning with u® converges to it, and

@ —u* |, << g0 | u® — u* g,
go=max (|1 — Bm,y|, |1 — BM, ]

Then the quantity g, attains its minimum value (M, — mg)/ (M, + mq) when P = 2/(My + m,).

The proof of this theorem follows as a special case of the theorem proved in /5, 9/. In
exactly the same way we can formulate the theorem of the existence and unigqueness of the
solution of problem B and of the convergence of the method of successive approximations using
inequalities (2.12) or (2.14).

The theorems on simple loading alsc hold.

Theorem 2.2. Let the specified volume and surface forces incrase in proportion to one
parameter M (2)

Xty x) =p (0 X x),,8° (& x) =p() §° (x) (2.15)
while on the boundary X the displacements u;° are proportional to another parameter A (f)
ud (2, x) = A (2) 4, (x) (2.16)

Suppose further that the functions (1.4) are power functions
Ya(ly oo, )= Dcg;lieri, . [Fami (2.17)
7

all kgy (i =1,...,n) are non-negative numbers c¢u;+ 0, and summation is carried out over j
such that

n n
D k== D Enj==r
i=1 i=1

where r is a fixed positive number.
The processes of stressing and deformation are then simple (in any sense) at every point

of the medium, if .
p =00 (2.18)

The theorem is proved by the method proposed in /2/.

Theérem 2.3. Let the medium be anisotropic, incompressible (2.6) and let conditions
(2.15) and (2.16) be satisfied. The stressing and deformation processes are then simple
(in the wide sense) at each point of the medium if

YyUme, - - -, L) = Deyllymai [ (2.19)
J

Here ky; (i=m 4 1,...,») are non-negative numbers c¢y;7 0, and summation is carried out
over j such, that

n n
21 bmyij=...= 21 knsj=r
f=m—+1 i=m+4-1

where r is a fixed positive number, and condition (2.18) is satisfied.

3. Thus to use the above theory it is necessary to know the n (r < 6) experimentally
obtained functions (l1.4) or (1.5) of n variables. The problem of the experimental determina~-
tion of these functions is fairly complicated. In this connection it is possible to consider
a simplified version of the theory according to which all linear invariants are related by
Hook's law. Instead of (l1.4) we then have

m
Yu=°21Axolo (3.1)

n
Yy=Yylm oo I = ZHAV(, 1 — &y Tmsts -+ .o )l T
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Similarly, instead of (1.5) we have

m
]u == Z Bube
81
n

IV=IV(Ym+11 8y Yn)Eo Z+1B‘Y5 [1 _gv(Ym-i-lv ey Yn)] Yb

where the matrices with elements Ags and Byy are mutually inverse.
The conditions of plasticity (1.7) and (1.9) for the simplified theory can be written
respectively, in the form

? Umats -+ o 1) < @oy @ (Yo, - - 0 Y) < D

i.e. the first m invariants do not affect the plastic region. When the conditions
n
Yy=Yy(y)= 3 dwll—o(y)l
Sd=m-41
n
Li=Ii(Yy)= 3 Bplt—Q(Y)]Y,
8=m+1

are satisfied, the simplified theory may be called the simplest.
To solve the related problems of thermoplasticity it is necessary to obtain the dissipa-
tion functions W* /11/. For the theory considered here this function has the form

n
We=Y Yol [0ala] (3.2)
a=]

and for the simplified theory (3.1) it is

n

Wr= Y Yygrlody) (3.3

a=m+1
Formulas (3.2) and (3.3) may also be used to construct a theory of strength.

4. It is sometimes assumed that the deformation theory of plasticity is identical with
the physically non-linear theory of elasticity /12/ in the case of the active process. That
assumption is equivalent to the potentiality of tensor (1.1) /2, 9/, i.e. a scalar function

W (Iy,...s1,) exists such that

W\ w9, (4.1)
% =Ty, T LT, )
=]

From a comparison of (4.1) and (1.1), (1.2) it follows that

Y, = 8W/al, (4.2)
and hence the following n(n — 1)/2 relations must exist between functions (1.4):
aYa/afﬂ = aYg./aIa, a < 5 (4.3)

Since the matrix Ags is symmetric, the number of such functions for the simplified
theory is reduced to (n—m)(n —m — 1)/2, and for the simplest theory all formulas of type
(4.3) are satisfied identically.

If the tensor (l.1) is potential, the deformation tensor (l1.6) must be such also, i.e.
a scalar function w(Y¥,,...Y,) exists such that

n

Sw Sw aYa, Jw
=g, = LW, %, e= (4.4)
Qass]

If W({0)=0,w(0)=0, then the following identity /9/ also holds
WA+ w= [ f3 77

For potential stress and deformation tensors we can construct the Lagrangian and the
Castiglianian

L={wuav - xuav —§ Seudx (4.5)
v v Is
E—-S w(a)dV+S o4;n5u:° 3% (4.6)

v p>1
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Using them, we can formulate the Lagrange and .Castigliano variational principle /9/.

Theorem 4.1. When inequalities (2.9), (2.11) or (2.10), (2.13) in which (4.l1) is taken
into account are satisfied, the Lagrangian (4.6) has its minimum in the equilibrium position.
The equilibrium point is unique.

Theorem 4.2. When inequalities (2.9), (2.12) or (2.10), (2.14) in (4.4) is taken into
account are satisfied, the Castiglianian (4.6) at the equilibrium position has a maximum.
The maximum point is unique.

Theorem 4.3. 1In the position of equilibrium the Castiglianian is identical with the
Lagrangian. .

The proof of Theorems 4.1—4.3 follows from /9/, as a special case.

For potential stress and strain tensors Theorems 2.2 and 2.3 on simple loading remain
valid, except that instead of constraints (2.17) and (2.19) the following must be taken,
respectively:

k
W=Sedya. . I (W = Se ol 1), Seloke0
q Q q

where kj; are non-negative numbers, and summation is carried out over g such that
n n
Igllc,»q=r+1 {ox i=%+1k,~q=r+ 1)

where r is a fixed non-negative number.

The theory is also simplified by the possible assumption that the function @ (Jy, ..., I,)
in (1.7) has the form

p=w=] f} Y, dl,

=1

or in the case of the simplified theory

n
o=w={ 3 v,a,
y=m+1

5. consider the special case of a transversely isotropic medium. In this casen=4,m=2
and we can assume that the transverse isotropy axis is directed along z;. We then have
a%)=6i1651+652612' a=Vy7, “sg)ﬁbiab,‘sv 2 =1

2

Iy = “}/2— (en+en)y o= exm
VZ STed T o

ly=—"5— Vien—ewr + b, L=V I{ad + )

1
o = 5 (€11 + e2e) (8,10 ;1 + 9,30 59)

1
PP =emdig s, PP = ey — 5 (o o) (Badjn + Bigd0) - emdido —
tadp — e Y = 030y e 00 — 2emdysdys
The non-zero independent components of the symmetric matrix 4, are

Ay = Cun + Cusgs 422 = Caans
Agy = Cpyn — Crigg = 2C1g1
Ay = 201313, A= V2 Ciyyy
In the case of simplified theory the relations between the stress and strain invariants
have the form
Y= Apdi+ Agl;, §=1, 2 (5.1)
Yo=Yaly l)=Agqll — 03 I, n=23, 4

When the stress and strain tensors are potential, the following relation exists between
@3 and @, :

A,ii-w,-l,%‘"—,ﬂ=4“[1—m.—-t. g—‘}’:] (5.2)

The conditions of anistropic incompressibility (2.6) for a transversely isotropic medium
I; = I =0 mean that the volume of the medium does not change under deformation, and that
there are no defromations in the direction of the z; axis. For a laminar medium with iso-
tropic layers, that may be in some cases modelled as a homogeneous transversely isotropic
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medium /9/, the axis is perpendicular to the layers. The first two terms in (5.1) indicate
that plaétic deformations do not occur when there is a change in volume and when the deforma-
tion is in the direction of the z, axis. For the simplest theory, (5.2) is satisfied identic-
ally, and inequalities (2.11) for the soft characteristic with respect to invariants /, and

I, have the form

0 bog =3,4
<o o+ 1, 7;—<TL,<1’ a=13

6. Consider an isotropic medium. 1In this case rn=2, m=1 and
ﬂg)= 6‘5, a=V3, L=YV390
12=t:u51/:;7-_e;}, pg)——-% 8s,;, pg)= e;
Matrix 4, is diagonal, and (A and p are Lamé constants)
Ay =38A42p, A,=2p

B=Ciatpr A= Cyyy — 201905 = Cume

Inequalities (2.11) for a soft characteristic with respect to invariants /; and I, have
the form /5/

3o 8 1 0q, s g | 95,
0<m<3 ~ %, {70 <3T+E -5 | <M
as €, ! [ €, ds
0<m Sz =3 |5 | o 3 | T | < Mo
u | :

The simplified theory in this case is identical with the simplest theory and with the
Il'yushin theory of small elastic-plastic deformations /2/ (0= @)

o= (RA+W8, siy=2ul — oledley

Inequality (2.11l) for a soft characteristic of the material is identical with the
Il'yushin inequality

d
0<w<¢°+ﬂu7:)_u<ﬂ<1o "E"“Tp'- My=2p

Note that in the simplified theory the stress tensor (and hence also the deformation
tensor) is always potential

e i L)t Sd
w:—é—-(k+%p)ﬂ + GSA e,ds,
[
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