
10 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

PMl4 

~UTIUNIAN N.Kh. and METLOV V.V., Non-linear problems of the theory of the creep of non- 
uniformly aging bodies with varying boundary. Dokl. AN SSSR, ~01.264, ~0.6, 1982. 

IL'SHAK v., RYKHLEVSKII Ia. and URBANOVSKII V., 
Bodies. Moscow, MIR, 1964. 

The Theory of Plasticity of Inhomogeneous 

JAGHDI P.M. and MURCH S.A., On the mechanical behaviour of viscoelastic plastic solids. 
Trans. ASME, Ser. E.J. Appl. Mech. Vo1.30, No.3, 1963. 

WJTIUNIAN N.Kh., The boundary value problem of the theory of creep for a body with accre- 
tion. PMM, Vo1.41, No.5, 1977. 

'&UTIUNIAN N.Kh. and MBTLOV V.V., Non-linear problems of the theory of creep of accreted 
bodies subject to aging. Izv. AN SSSR, MIT, No.4, 1983. 

ZlARLAB V.D., The linear theory of the creep-of a growing body. Trans. Leningr. Inzh.- 
Stroit. Inst. Iss. 49, 1966. 

:L'IUSHYN A-A., Plasticity, Pt. 1. Elastic-plastic Deformations. Moscow-Leningrad. 
Gostekhizdat. 1948. 

;HINOZUKA M., Stresses in an incompressible viscoelastic-plastic thick-walled cylinder. 
AIAA J. Vo1.2, 1~0.10, 1964. 
CROCHET M.J., Symmetric deformations of fiscoelastic-plastic cylinders. Trans. ASME, Ser. 
E.J. Appl. Mech., Vo1.33, No.2, 1966. 

ROZOVSKII M.I. and DOLININA H.H., Investigation of the zone of plasticity in the after- 
effect of certain bodies with central and axial symmetry. Dokl. AN SSSR, Vo1.195, No.4, 
1975. 

ARUTIUNIAN N.Xh. and SHOIKIIEM B.A., On the growth of a viscoelastic hollow sphere subject 
to aging. Dokl. AN SSSR, V01.73, No.5, 1981. 

U.S.S.R.,V01.48, No.l,pp.lO-17,198? 
Printed in Great Britain 

Translated by J.J.D. 

0021-8928/84 $~O.OO+O.OO 
01985 Pergamon Press Ltd. 

THE DEFORMATION THEORY OF PLASTICITY OF ANISOTROPIC MEDIA* 

B.E. POBEDRYA 

Mutually inverse defining equations of the deformation theory of plasticity 
of media with arbitrary anisotropy are written assuming the relations 
between the stresses and deformations to be quasilinear. The conditions 
of plasticity and unloading are considered. Theorems are proved on the 
existence and uniqueness of solutions of the quasistatic problem of the 
deformation theory of plasticity and of simple loading. The method of 
successive approximations for solving the problem is considered, and its 
convergence is proved. Various means of simplyfying the theory are 
considered. Theorems of minimum Lagrangian and the maximum of the 
Castiglianian are proved. 

In the deformation theory of plasticity the stresses and deformations are connected by 
finite relations. When these relations are quasilinear (tensor-linear) /l/, and'the medium 
is isotropic, for simple processes /2/ all theories of plasticity agree with the deformation 
theory (the theory of small elastic-plastic deformations) /3/. However, in practice that 
theory is used for a wider class of processes of deformations. The advantage of this theory 
is its simplicity, the mutually inverse relations between the stresses and deformations, the 
availability of theorems of existence and uniqueness and of the minimum of the Lagrangian 
and maximum of the Castiglianian , of the theorem of simple loading and unloading /2/, and 
also the existence of an effective method of solving quasistatic problems, the method of 
elastic solutions /2/, whose convergence was adequatly analyzed in /4, 5/. Below a deforma- 
tion theory is constructed for initially anisotropic media. 

1. Let the symmetric stress tensor u be a tensor function of the small deformation 
tensor e; this function is invariant to transformations that characterize certain classes 
of anisotropy. The function can be represented in the form of the dependence of the tensor 
s and some "parametric" tensors A,, A,,... that define the considered anisotropy class /l/. 
Let us assume that this anisotropic function is quasilinear (tensor-linear) /l, 6/. This 
means that its polynomial representation /7/ contains only tensors linearly dependents on e, 

*Prikl.Matem.Mekhan.,48,1,29-37,1984 
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and tensors independent of it. 
Let the form of the quasilinear tensor function in some rectangular Cartesian system of 

coordinates of three-dimensional Euclidean space have the form 

(1.1) 

where Y, are some invariant scalar functions of combined invariants I,,I,, . . . of the tensors 
s, A,, A,, . . ., and pfa) is some tensor independent of the deformation tensor e or dependent 

on it linearly. In the selected system of coordinates we can write 

n 

Eij = I2 (a) 
Pi, s 

ppp!$) 
--7i_=6 ar pp 

a=1 as 
ag, -em+_ 

acij a 

(l-2) 

i.e. 
PC=,. 

the deformation tensor is expressed in the form of a sum of XI pairwise orthogonal tensors 

It is assumed that summation from 1 to 3 is carried out over the recurrent Latin letter 
indices, while there is no summation over the Greek letter indices. It can 
number n (a, fi = 1, 2, . ., n) cannot exceed six /l/. 

We shall call the invariant ZXlinear, if a constant tensor acX) exists 

Otherwise the invariant I, is called non-linear. We can now represent 
in the form 

m 

uij = c 
x=1 

Yx(I1,. . . ,I$$- + 2 YY(II,. . . , I& 
v=m+1 

Y 

be seen that the 

such that 

relations (1.1) 

(1.3) 

Without stating this every time, we shall assume that the indices a and p take the values 
1 to R, the index x takes values from 1 to m, and y takes values from m + 1 fo II. 

Relations (1.1) or (1.3) establish a connection between the stresses and defromations 
when, for instance, the n functions 

(1.4) 

where A ’ afi 1s some square matrix n x n with constant coefficients, Cjjk, are the components 
of the moduli of elasticity tensor, and o, are functions of the invariants I,, . . . . I, , are 
known from experiment. For a linearly elastic medium we set %=O. 

If the scalar functions (1.4) are solvable for I,, I,, . . . . Z,, 

(1.5) 

where Jijk, are the components of the elastic yield tensor, and the tensors P(a) are defined 
as in (1.2) 

n 

then (1.3) are also solvable for the deformations 

m 

ezj = Ic Ix (Yl, 
0:;’ 

X=-l 

. . ..W~ + t I,(Y,,...,Y# 
Y-M-1 

Y 
(1.6) 

It is, 
and P'") 

thus, possible to establish mutually inverse relations between the tensors pw 
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The deviator of the deformation tensor e,that satisfies condition /2/ 

eij(r) s si j(t) - +B(t)&j = h(t)eip, e a &ii 

where e" is a tensor independent of time (of the load parameter), is tailed the simple deform- 
ation process. Similarly for the simple stress process 

s,j 0) = Ql1 @) - u ft) &, = I" ft) Is,,*, 0 3 '/sot* 

where s" is the deviator of the stress tensor which is independent of time (of the load 
parameter 1. 

We call the processeS of deformation e(1) and of stressing a(t) simple in the narrow 
sense, if 

st1 (4 = I (tf QO, (111 0) = p 6) %I0 

We call the process of defromation and stressing, respectively, simple in the broadsense, 
if 

&'(t; = h(t)p;jv', ‘(V) Pjr'(t)= p(t) P&j 

It will be seen that to the simple process of defromation in the conventional, broad and 
narrow sense there corresponds the stressing process in the conventional, broad and narrow 
senses, respectively'. 

In the deformation space let the function cp(Z,, . . ..Z.)be specified, and the quantity 'po, 
which is experimentally determined and may depend on the loading history /3, 8/. The condi- 
tion of plasticity involves the following. If 

cp (Zl, * * -1 &a) < ‘PO (1.7) 

the relation between the stresses and strains (1.3), (1.6) obeys Hooke's law, i.e. it is 
necessary to set aam O,Q=O in (1.4) and (1.5). If, however, inequality 11.7) isviolated, 
plastic deformation takes place. If the process is active (loading) (ot#eli =Y,dl, + ..* 

Y&Z;, or, for example, dgp> 0 1, (1.4) hold. If, however, at some instant unloading begins 

(passive process), (utjdefj=Y,dZl + . . . -l-Y,&<0 or, for example, f&p<0 ), then it is 
necessary instead of (1.4) to use the conditions of, for instance, linear unloading 

Y a--Y;= &%&-Id (1.81 

where the quantities denoted by a prime correspond to stresses and deformations accumulated 
up to the instant when unloading begins. 

Obviously the condition of plasticity (1.7) may also be formulated in the stress space 

Q1 fYP * . ., Y,) < Qt* (1.9) 

Then at unloading (e,$Zu,,nZ,dY, +... + Z,,du,< 0 or &'<O) instead of (1.8) we 
have 

n 
Z =-Zor'== 

6 
’ &3(YE - Yg’) (1.10) 
1 

2. The equations of equilibrium 

slt.f + xt = 0 

where X is the vector of volume forces, can be written, using (1.4) in the form 

(2.1) 

m 

z: ’ 
x2=* 

y, jq+[ 2 Yvqqj+Xi=o 
v-m+1 

(2.2) 

Suppose that on the part 2, of the body boundary X that bounds the volume V, we are 

given, far instance, the displacements u: = 0, and on another part Z, the load 3%" 

4 IXh = O* U(j?Zj I** = Si” (2.3) 

Then the quasistatic problem of the deformation theory of plasticity (in displacements) 
consists of solving the equilibrium equations (2.1) and satisfying the boundary conditions 
(2.3), taking condition (1.4) or (1.8) into account (depending on whether Loading or unload- 
ing takes place) and the Cauchy relations 



Eli = ‘io @I, 3 + u31 I) (2.4) 

We shall call problem (2.21, (2.31, (1.4) or (1.81, (2.4) problem A. 
The quasistatic problem in terms of stresses (problem B) consists of solving the equa- 

tions of equilibrium (2.1) and six equations of compatibility 

qij S fikf l js&k$t, im = 0 12.5) 

when the boundary conditions (2.3) and satisfied. In (2.5) and (2.3) the deformations (in 
displacements) must be expressed in stresses in agreement with (1.6) and (1.5) or (1.10). 
The quasistatic problem C can also be formulated in the deformation theory of plasticity in 
stresses /9/. 

A medium is said to be anisotropically incompressible, when the conditions 

I szsz 0, x = 1, . . ., m (2.6) 

hold. For an anistoropically incompressible medium in problem A, m equations (2.6) are added 
for the m unknowns YxrX= 1, . . . . m in the equilibrium equations (2.21, since in (1.4) only 
relations 

remain. 
To solve the boundary value problems, for instance problem A, the method of successive 

approximations may be used 

Ci jktdr‘$’ = cijk$4~‘lj - e! i%j, j (@I + X$1 (2.7) 

z.$+n IX* = 0, c$ jk&?‘” j IQ = CijklL4’kq)l~j I& - 

B Iaij (UC*‘) nj IL - Si”l 
(2.8) 

where the expression Us, denotes that the stresses are expressed in terms of deformations 
by relations (1.3) and (1.4) or (1.8) , 'and the deformations in terms of relations (2.4). 

We will say that a material possesses a soft characteristic with respect to the invariant 
I a, if 

and a stiff characteristic with respect to #at invariant, if 

(2.9) 

(2.10) 

Giote that the conditions of linear unloading (1.8) are only valid for materials with a 
soft characteristic.) 

We put 

and suppose that in the case of a soft characteristic with respect to the invariant I, the 
following inequalities are satisfied: 

(2.11) 

(2.12) 

while for the case of a stiff characteristic with respect to the same invariant the inequal- 
ities 

(2.13) 

(2.14) 

are satisfied where m,, Me, no, No are certain positive numbers. 
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Theorem 2.1. Suppose a unique generalized solution exists of the problem of the theory 
of elasticity of an anisotropic body u(O) that is obtained from problem A when o, ~0 (a= 1, 
. . .) n). Moreover suppose inequalities (2.11) or (2.13) hold, and the volume and surface forces 
belong to the space L, /lo/, and 

xi E Lq (V, q > O/S; St” E L* (X2), q > 4/3 

Then a unique generalized solution u* of problem A exists, and for any value of the 

iteration parameter B(O< fl<VM,) and the process of successive approximations (2.71, (2.8) 
beginning with u(O) converges to it, and 

jl u(P) - u* IIL, < qo* II I@) - u* llL* 

q. = ma= (I 1 - Bm, I, I 1 - PM, I) 

Then the quantity q,, attains its minimum value (&f,- m,)/(~, f m,) when p= 2/(M, + mo). 
The proof of this theorem follows as a special case of the theorem proved in /5, 9/. In 

exactly the same way we can formulate the theorem of the existence and uniqueness of the 
solution of problem B and of the convergence of the method of successive approximations using 
inequalities (2.12) or (2.14). 

The theorems on simple loading also hold. 

Theorem 2.2. Let the specified volume and surface forces incrase in proportion to one 
parameter p(t) 

x1 (t x) = P (t) xi" (r),,SIo (G x) = p(t) Si" (x) (2.15) 

while on the boundary 2 the displacements ui" are proportional to another parameter h(t) 

ut" (t, I) = h(t) ut- (x) (2.16) 

Suppose further that the functions (1.4) are power functions 

yav1,..., I,) = 2 C,jZy . .‘. IF (2.17) 
j 

all &J (i = 1,. . ., n) are non-negative numbers cCx,# 0 t and summation is carried out over j 
such that 

*~~ klij=. . . =,~ knij-_ 

where r is a fixed positive number. 
The processes of stressing and deformation are then simple (in any sense) at every point 

of the medium, if 
II (4 = [A (Gl 

The theorem is proved by the method proposed in /2/. 

(2 

Theorem 2.3. Let the medium be anisotropic, incompressible (2.6) and let conditions 
(2.15) and (2.16) be satisfied. The stressing and deformation processes are then simple 
(in the wide sense) at each point of the medium if 

18) 

(2.19) 

Here & (i = m + 1,. ,, ., n) are non-negative numbers C,l# 0 r and summation is carried out 
over j such, that 

where r is a fixed positive number, and condition (2.18) is satisfied. 

3. Thus to use the above theory it is necessary to know the n (n<6) experimentally 
obtained functions (1.4) or (1.5) of n variables. The problem of the experimental determina- 
tion of these functions is fairly complicated. In this connection it is possible to consider 
a simplified version of the theory according to which all linear invariants are related by 
Hook's law. Instead of (1.4) we then have 

YM=;, &da (3.1) 

Y, = Yy(Zm+1, . . ., &,jzb $+IAyb,-&n+w. . 7 Z,)l Ib 
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Similarly, instead of (1.5) we have 

IX= j$byb 

zY=zY(Ym+l...., y,)Gb &B,aLi -%(y*+r, a.0 vyn)l yb 

where the matrices with elements -4,~ and BaE are mutually inverse. 
The conditions of plasticity (1.7) and (1.9) for the simplified theory can be written 

respectively, in the form 

cp (Im+l, . . -, Al) c ‘PO, @ Wm+l, * * -1 Yn) < % 

i.e. the first m invariants do not affect the plastic region. When the conditions 

y, = y, (1,) = b& Ayb [ 1 - 0 (I,)] lb 

1, = 1, (y,) = bg+l B,b [I - a (y,)] yb 

are satisfied, the simplified theory may be called the simplest. 
To solve the related oroblems of thermonlasticitv it is necessary to obtain the dissipa- 

^ tion functions W* /ll/. For the theory considered here 
n 

w*= 

and for the simplified theory (3.1) it is 

11 
w*= a--m+l YY -& IVJvl c 

this function has the form 

(3.2) 

(3.3) 

Formulas (3.2) and (3.3) may also be used to construct a theory of strength. 

4. It is sometimes assumed that the deformation theory of plasticity is identical with 
the physically non-linear theory of elasticity /12/ in the case of the active process. That 
assumption is equivalent to the potentiality of tensor (1.1) /2, 9/, i.e. a scalar function 

W(I,,. . . &I,,) exists such that 

From a comparison of 

aw n aw aI 
aij=ae,j= c 

-2 
a==1 

ar, hij 

(4.1) and (l.l), (1.2) it follows that 

Y, = awm, 

(4.1) 

(4.2) 

and hence the following n(n - I)/2 relations must exist between functions (1.4) : 

ar,mfl = aY&%, a < B (4.3) 

Since the matrix -4,~ is symmetric, the number of such functions for the simplified 
theory is reduced to (n-m)(n - m - i)/2, and for the simplest theory all formulas of type 
(4.3) are satisfied identically. 

If the tensor (1.1) is potential, the deformation tensor (1.6) must be such also, i.e. 
a scalar function w(Y,,...Y,) exists such that 

au, n 
eij= do,j= c aw ay, 3w 

--, z==r 
a-1 

ay, asij 
0. 

(4.4) 

If W(O)= 0, w (0) =O, then the following identity /9/ also holds 

W + 20 = uijefj 
For potential stress and deformation tensors we can construct the Lagrangian and the 

Castiglianian 

LGS W(U)U!V-1 x+~~v-S S:uidZ (4.5) 
V V E 

K s - 1 w (u) dV + S UijnjUiO d2 
V 0 

(4.6) 
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Using them, we can formulate the Lagrange and.Castigliano variational principle /9/. 

Theorem 4 .l. When inequalities (2.9), (2.11) or (2.101, (2.13) in which (4.1) is taken 
into account are satisfied, the Lagrangian (4.6) has its minimum in the equilibrium position. 
The equilibrium point is unique. 

Theorem 4.2. When inequalities (2.9), (2.12) or (2.101, (2.14) in (4.4) is taken into 
account are satisfied, the Castiglianian (4.6) at the equilibrium position has a maximum. 
The maximum point is unique. 

Theorem 4.3. In the position of equilibrium the Castiglianian is identical with the 
Lagrangian. 

The proof of Theorems 4.1-4.3 follows from /9/, as a'special case. 
For potential stress and strain tensors Theorems 2.2 and 2.3 on simple loading remain 

valid, except that instead of constraints (2.17) and (2.19) the following must be taken, 
respectively: 

w=&&.. .z~(W=BC,I~~~lq...IhQ), Zc,*#O 
* ” * 

where kiq are non-negative numbers, and summation is carried out over g such that 

$lkiq=r+ 1 ( or i_$+l k, = r -t 1) 

where r is a fixed non-negative number. 
The theory is also simplified by the possible assumption that the function q,(I,, . . . . I,,) 

in (1.7) has the form 

cp=w=si: Y,dI, 
cl.=1 

or in the case of the simplified theory 

,=wq i Y,dI, 

5. Consider the special case of 
and we can assume that the transverse 

a$) = bilbjl + 6in15j*' 

a transversely isotropic medium. In this case n= 4,m= 2 
isotropy axis is directed along z3. We then have 

I, = v 2 ha* + euy) 

Pfi’ = + kl + %A) 16i16jl. + '*r6j*) 

PjT)=d**'jJ* Pe)= e{j- +(%I +%I Ca*lbjl + 'ia'j*) + %8Qj3-- 

edjS-Ej&ist PC' = ea'js $_ej$i~ -2ea16,$js 

The non-zero independent components of the symmetric matrix A,@ are 

Au = GUI + GIX, A, = '&a, 
A,, = C,U, - GUS= 2G,, 
A,, = 'GEM AU = l/z CM, 

In the case of simplified theory the relations between the stress and strain invariants 
have the form 

Y* = ApI, + A& f = 1. 2 (5.1) 

Y,, = Y,, (I,, 1,) =A, Ii - o (13, &)I I,,, rl = 3, 4 

When the stress and strain tensors are potential, the following relation existsbetween 

% and 0,: 

(5.2) 

The conditions of anistropic incompressibility (2.6) for a transversely isotropicmedium 
l1 = I%= o mean that the volume of the medium does not change under deformation, and that 

there are no defromations in the direction of the zS axis. For a laminar medium with iso- 
tropic layers, that may be in some cases modelled as a homogeneous transversely isotropic 
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medium /9/, the axis is perpendicular to the layers. The first two terms in (5.1) indicate 

that plastic deformations do not occur when there is a change in volume and when the deforma- 
tion is in the direction of the zI axis. For the simplest theory, (5.2) is satisfied identic- 
ally, and inequalities (2.11) for the soft characteristic with respect to invariants Is and 
I, have the form 

6. Consider an isotropic medium. In this case IZ= 2, m= 1 and 

Matrix AaB is diagonal, and (A and p are Lam6 constants) 

Inequalities (2.11) 
the form /5/ 

A,,=3h+2~, R,=21" 
c e c,, I = c,,,, - 2c,,,, = c, 

for a soft characteristic with respect to invariants 1, and 1, have 

The simplified theory in this case is identical with the simplest theory and with the 
Il'yushin theory of small elastic-plastic deformations /2/ (9~ o) 

0 = (A+ 2/*ll) 8, sij = 2p Ii - 0 WI eij 

Inequality (2.11) for a soft characteristic of the material is identical with the 
Il'yushin inequality 

Note that in the simplified theory the stress tensor (and hence also the deformation 
tensor) is always potential 
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